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Abstract: The management of water resources is becoming increasingly important in several contexts,
including agriculture. Recently, innovative agricultural practices, advanced sensors, and Internet
of Things (IoT) devices have made it possible to improve the efficiency of water use. However, it is
the application of control strategies based on advanced machine learning techniques that enables
the adoption of smart irrigation scheduling and the immediate economic, social, and environmental
benefits. This challenging research area has attracted the attention of many researchers worldwide,
who have proposed several technological and methodological solutions. Unfortunately, the results
of these scientific efforts have not yet been categorized in a thematic survey, making it difficult
to understand how far we are from optimal water management based on machine learning. This
paper fills this gap by focusing on smart irrigation systems with an emphasis on machine learning.
More specifically, the generic structure of a smart agriculture system is presented, and existing
machine learning strategies and available datasets are discussed. Furthermore, several open issues
are identified, especially in the processing of long-term data, also due to the lack of corresponding
annotated datasets. Finally, some interesting future research directions to be pursued in order to
build scalable, domain-independent approaches are proposed.

Keywords: smart irrigation; machine learning; water resources management; precision agriculture

1. Introduction

Water Resources Management (WMR) is getting to be an imperative point in differ-
ent production areas. Seventy percent of freshwater used worldwide is consumed by
agriculture, and about 1.2 billion people live in regions with severe water scarcity and
shortages that make agriculture difficult, high drought frequency in pastureland and rain-
fed areas, or high water stress in irrigated areas [1]. When water is limited, production
is reduced, and food and feed prices increase, threatening food security and affordabil-
ity (https://agriculture.ec.europa.eu/system/files/2023-05/factsheet-agriresearch-water-
manament_en_0.pdf (accessed on 23 November 2023).) Water use efficiency can be firstly
improved by substituting traditional surface/drip irrigation systems with modern irriga-
tion methods (spray sprinkler, rotor sprinkler, rotary nozzle, and rotators) [2]. Changing
the irrigation system is not always possible, and its implementation must consider compat-
ibility with the best services of the farm, the topographic and properties of the soil, crop
specs, economic feasibility, and some social constraints. This solution may not completely
solve the water scarcity issue and then a further increase in water efficiency can be achieved
through a smart use of irrigation systems. Smart irrigation involves the application of
water at the right time, in the right amounts, and even at the right spot in the field using
existing irrigation systems [3]. This way, it is possible to achieve a balance between the
three pillars (economic, social, and environmental) of sustainability. The development of
smart irrigation systems is thus attracting the attention of many researchers all around
the world.
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The fundamental principle of smart irrigation is its conceptual framework, which
integrates agricultural methods and cutting-edge sensors and IoT devices to maximize
water use efficiency. Sensing soil and/or weather conditions, it is possible to gather
real-time data on variables critical for irrigation decisions. Irrigation operations can be
performed more efficiently by using automation and control systems that allow for real-time
adjustments depending on data collection. Web-based systems for the remote monitoring
and management of irrigation [4], and IoT platforms based on edge and cloud computing [5]
are some examples of such a kind of smart irrigation approach. A deeper analysis of the
historical data, environmental factors, and agricultural technical knowledge can be useful
for better forecasting crop water needs. This further step requires the study and exploitation
of advanced algorithms that can learn from available data and generalize to unseen future
data, falling this way into the scientific sector called machine learning [6].

In recent years, therefore, various technological and methodological solutions have
been proposed, with great scientific excitement in proposing machine learning-based solu-
tions capable of optimizing irrigation scheduling. Unfortunately, the results of this scientific
fervor have not been categorized yet by a thematic survey, making it difficult to understand
how far along we are in terms of optimal water management. Most of the existing surveys
have concentrated indeed on the broader application areas of smart and precision agricul-
ture, with particular attention to plant disease detection and classification [7]. An overview
of trends in sensors and IoT systems for irrigation can be found in [8] whereas modeling
and control, in pipelines for applications in urban and rural agriculture that incorporate
artificial intelligence into irrigation systems, was the focus of the systematic review in [9].
Finally, in [10] applications based on machine learning for generic water management (in
irrigation, human consumption, management by the municipalities, etc.) were system-
atically reviewed. Unfortunately, there is no paper specifically focused on technological
frameworks for smart irrigation. To fill this gap, this paper introduces a schematic rep-
resentation of smart irrigation architectures and describes the main technologies already
exploited with a deep analysis of machine learning models. It also provides a discussion
about the open challenges and viable research pathways, making it possible to understand
how far we are from having highly effective smart irrigation frameworks which can be
’affordable’ to be put in the fields to achieve optimum water usage.

The remainder of the paper is structured as follows: first, in Section 2, the material
and methods used to collect works from the literature are pointed out, and common
components of smart irrigation systems are defined and described, also providing an
architectural taxonomy. Then, in Sections 3–6, the three layers of a generic technological
architecture for smart irrigation are described along with related available datasets for
benchmarking existing approaches based on machine learning. Open challenges are then
discussed in Section 7, whereas new viable research pathways are mentioned in Section 8,
starting from the latest machine learning findings. Finally, Section 9 concludes the paper.

2. Material, Methods and Taxonomy

This paper is a narrative review of the recent literature. However, an initial selection
of papers was made according to systematic criteria. A coarse selection of papers was
made, indeed, starting from queries into the most common scientific databases, i.e., Elsevier
Scopus and Google Scholar. Works published since 2019 were considered. In Scopus,
the query TITLE-ABS-KEY ((machine AND learning) AND ( smart AND irrigation)) AND
PUBYEAR > 2018 returned 367 documents. In Google Scholar, the query “machine learning”
and “smart irrigation” returned 818 documents. The documents were therefore selected
based on their contents and relevance to this paper’s narrative paths. The number of
citations (weighted on the publication year) was an important criterion for deciding which
works deserve mentioning among similar works. High-quality papers dealing with less
debated research lines were also considered independently from the number of citations.
After reading the picked-up papers, it was possible to obtain a general definition of a smart
irrigation system as a set of sensors, Internet of Things (IoT) technologies, and algorithms.
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Sensors sense the environment and the soil conditions, IoT adapts and sends the sensed
values to local or remote processing units in which trained machine learning algorithms
can forecast agrotechnical indicators useful to decide if irrigation is needed and eventually
the optimal amount of water to be provided to the crops. A generic smart irrigation system
can be then schematically represented (icons were taken from https://thenounproject.com,
access on 3 April 2024) as in Figure 1, where it is possible to find the following:

1. A physical layer: it consists of sensors, actuators, processing and storage units inter-
connected through a communication network.

2. A processing layer: it consists of algorithms used to analyze available knowledge,
location, crops, and to provide outcomes depending on the requirement of the deci-
sion layer.

3. Datasets and data sources: historical data locally or remotely stored to improve the
processing layer’s ability to model the problem defined by the decision layer.

4. Decisions layer: the set of services provided to the end user to reach the specific
goal. Experts provide specific rules that define actions in response to the processing
layer outcomes.

Figure 1. Schema of a generic smart irrigation system: physical layer is responsible for retrieving
on-field data and operating actions on-field. Processing units and storage, even if they are part of the
physical layer, serve, respectively, the processing layer and the datasets and data sources layer, resulting
in a conceptual superimposition of these layers. The decision layer represents the interface with the
expert and end user and communicates with all the other layers.

Each layer will be detailed in the following sections, with a deeper focus on machine
learning algorithms and the architectures involved.

3. The Physical Layer

The physical layer comprises locally or remotely situated sensors, actuators, and pro-
cessing units coupled with a communication network. Physical sensors, such as those that
measure temperature, humidity, and soil moisture, are used for monitoring the plants,
the soil, and the weather. Irrigation scheduling extensively uses soil moisture sensors,
which measure either the soil water potential or the soil water content. Sensors with small
footprints that are positioned at various depths can be used to record soil moisture dynam-
ics, improve the accuracy of the measurements, and better understand how crop water
usage and irrigation affect variations in soil water content. A wide range of information on
the soil’s physical, chemical, and mechanical characteristics can be obtained via soil sensors
using optical, radiometric, mechanical, acoustic, electrical, electromagnetic, pneumatic, or
electrochemical measurements.

https://thenounproject.com
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Microcontrollers built by open-source electronic prototyping platforms such as AR-
DUINO (www.arduino.cc/, accessed on 19 May 2024), or even more simplified boards
(https://www.cytron.io/p-maker-uno-simplifying-arduino-for-education, accessed on 19
May 2024), are commonly used to sample signals coming from analogue sensors.

In a real-time system, one of the crucial issues is the reliability of the physical sensor
nodes [11]. A defective sensor node has a significant influence on any real-time system.
It is quite challenging, and sometimes impossible, to determine if the physical sensor
is communicating accurate values or failing because of outside disturbances like noise.
Physical nodes that are not working properly can only be found by manual examination,
which is a time-consuming and arduous task. In a smart irrigation system, erroneous
values transmitted to the farmer will have a detrimental effect on the system’s overall
dependability and public perception of the system. Reading wrong data can lead the model
to make wrong decisions and, for this reason, fault detection and isolation algorithms are
required, but their study is in early infancy [12]

The use of remotely located sensors based on imagery acquired by Unmanned Aerial
Vehicles (UAVs) represents a possible alternative to obtaining accurate information about
soil and crops, overcoming in this way the aforementioned limitations of physical sensors.

UAV-based methods collect imagery and try to train models by converting the data
from the imagery into a variable that has a strong correlation with existing ground mea-
surements [13]. The data collected by UAVs have a high spatio-temporal resolution and
can be effectively used to infer soil moisture conditions and crop growth indicators. Several
studies in this area have explored the near-infrared and visible bands [14]. Also, the surface
soil moisture was proven to be significantly correlated with the brightness of UAV visible
images [15]. On the other hand, since transpiration uses a lot of energy and reduces the surface
temperature of leaves and vegetation linearly, thermal imaging is especially well suited for the
early detection of drought stress [16]. Recent studies have furthermore shown that integrating
multisource data can be effectively used for remote soil moisture estimation [17]. Crop health
is characterized instead by vegetation indices, which are algebraic combinations of reflectance
data acquired from a multispectral sensor [18]. Finally, evapotranspiration, the value that
characterizes the loss of water from the soil due to both evaporation from the soil surface
and transpiration from the leaves of the plants growing on it, can be also estimated from
thermal and multispectral cameras mounted on UAVs [19]. Actuators are additional physical
layer components that operate by following directions from the control system. They act on
drip irrigation systems, sprinklers, pumps, valves, or sprinkler systems to water the plants
as needed based on the findings of the analysis. To ensure that all the components have
dependable power sources, power supply facilities are also necessary. Combining mains
power, batteries, solar panels, or other renewable energy sources can accomplish this [20].

Some main requirements for the physical components (usually using batteries and
requiring having a long working life) are low-energy demand and cheapness (due to the
large number of nodes, small additional costs in one node cause large extra expenditures in
the overall cost of the system).

Samples from sensors can be processed by a code running on a central control unit (e.g.,
a workstation), and can be sent to the cloud [21] or directly processed on edge processing
units (e.g., a Raspberry Pi (www.raspberrypi.org/), accessed on 19 May 2024), according to
the Fog Computing paradigm [22,23].

A communication network must ensure reliability in connecting sensors, actuators,
and processing units.

LAN, Wi-Fi, cellular networks, and other wireless communication protocols are only
some of the technologies which can be used to guarantee a constant connection between the
system’s components. The Global System for Mobile Communications (GSM) as the primary
controller device, ZigBee (https://csa-iot.org/all-solutions/zigbee/, accessed on 19 May 2024)
as a data transmission technology, and MQTT (https://mqtt.org/, accessed on 19 May 2024) as
a messaging protocol are the most suitable, effective, and advantageous wireless technology
solutions [24]. Another element of these systems is an application programming interface (API),

www.arduino.cc/
https://www.cytron.io/p-maker-uno-simplifying-arduino-for-education
www.raspberrypi.org/
https://csa-iot.org/all-solutions/zigbee/
https://mqtt.org/
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which functions as a software bridge between apps and allows users to programmatically
interact with sensors or data (e.g., to visualize them). Node-RED and other open-source, low-
code alternatives can be used to accomplish this task: for instance InfluxDB (https://www.
influxdata.com/, accessed on 19 May 2024) to extract insights from time series data, and Node-
RED (https://nodered.org/, accessed on 19 May 2024) for data queries. Alternative services
can be established through Azure IoT (https://azure.microsoft.com/, accessed on 19 May 2024)
or Amazon Web Services (https://aws.amazon.com/, accessed on 19 May 2024), which employ
an optional subscription-based model [25].

4. The Processing Layer

In the processing layer, data coming from the physical layer and from available
datasets are processed to make predictions which contribute to the decisions about irri-
gation scheduling. Predictions can lean on predefined rules and formal logic as usually
done by traditional ML methods, which are also referred to as symbolic methods. Gener-
ally, they need feature engineering, which is the process of manually choosing, extracting,
and weighing characteristics from unprocessed data. The underlying models need a small
amount of processing power and a finite number of parameters to train.

Alternatively, deep learning enables computers to process data in a manner that mimics
the functionality of the human brain. Deep nets do not undertake the process of how the
data are made; indeed, they just rely on extensive data to learn how to transform inputs into
outputs using numerous rules [26]. Most of the existing machine learning techniques were
used to build smart irrigation systems as well. In the following subsections, the techniques
used for extracting knowledge at the processing layer in smart irrigation architectures will
be presented and discussed.

4.1. Traditional Machine Learning Methods

Based on their characteristics, traditional models—also known as shallow, non-deep
models—can be categorized as either parametric or non-parametric [27]. A parametric
model is a learning model that, regardless of the quantity of training instances, summarizes
data using a fixed set of parameters. In other words, a parametric model assumes a certain
data structure, and it will not alter its estimation of the number of parameters it requires no
matter how much data it is fed. Conversely, non-parametric machine learning algorithms
are those that do not make any strong assumptions about the mapping function’s form.
They can take any functional form from the training data and learn them without making
any assumptions. They work very well when a large amount of data are available with no
reliable prior information. Traditional parametric and non-parametric approaches found in
the literature with specific applications in smart irrigation are discussed in the following,
and they are summarized in Table 1. For each system, the machine learning method,
the actual input and estimated output values and performance are reported, providing a
quantification of the empirical assessment of the systems.

Linear, polynomial, and logistic regression are some examples of parametric machine
learning methods used for smart irrigation. Regression is one of the data mining techniques
used to forecast the amount of water required for the next irrigation. Regression can
model linear or arbitrary relationships between input and output variables. In the case of
non-numerical output (categorical), the methods are reported as logistic regression.

The regression analysis has been widely applied to predict soil moisture, specifically,
the amount of water held in the soil in the root zone of the plant, given measured values
like ambient temperature and irrigation volume [28]. Methods using the Bayesian theorem
for inference are reported as Bayesian models. They estimate posterior probabilities by
Bayesian inference using previous information in the form of a prior distribution. This
approach has been exploited in [29] to model posterior probability over time of the crop
coefficient constrained to radiation. Only three sensors’ worth of data—temperature, global
radiation, and crop weight—were used as input.

https://www.influxdata.com/
https://www.influxdata.com/
https://nodered.org/
https://azure.microsoft.com/
https://aws.amazon.com/
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Fuzzy logic helps in modeling situations of the real world which are so complex that
they cannot easily be modeled by common binary outputs, e.g., true or false. In those cases,
the fuzzy logic proves to be helpful and flexible, and it uses some degrees of truth instead.
This approach was used in [30] to manage irrigating through a controlled valve by using
soil moisture and temperature as input and to calculate the amount of water to be released.

Among non-parametric machine learning methods, the k-nearest neighbors (kNN)
algorithm is a quite simple algorithm widely used for classification and regression. K-
nearest neighbors stores all available cases and ranks new cases based on a similarity
measure. In [31], it has been demonstrated (K = 3) to be highly effective in a binary
classification problem that, starting from multiple sensor inputs (soil humidity sensor,
temperature and humidity sensor, and rain sensors), must decide either to deactivate or
activate a pump.

Table 1. Most relevant smart irrigation systems relying on traditional machine learning algorithms.
Acronyms: ET = evapotranspiration ; (R)MSE = (root) mean squared error; acc = number of correct
predictions/number of predictions made.

Works Method Inputs
(Actual)

Outputs
(Estimated) Performance

[28] logistic
regression

soil moisture
weather data
type of crop

Irrigation needed
Probability NA

[29] Bayesian
breakModels

temperature
global radiation

crop weight
ET RMSE = 0.11

[30] fuzzy controller soil moisture
air temperature

required amount
of water NA

[31] K-Nearest
Neighbors

soil humidity
air temperature

air humidity
rain

pump
act/deact acc = 0.98

[32] Decision trees

crop types
soil moisture

weather conditions
weather forecast
soil water profile

soil moisture RMSE = 0.48

[33]
gradient boosting

+
kmeans

Weather Forecasting
Soil Moisture

soil temperature
Light Radiation

Temperature
Humidity

soil moisture acc = 0.97
MSE = 0.20

[34] gradient boosting
regression weather data ET RMSE = 0.16

[35]
K-means

+
SVM

soil moisture
Humidity

Temperature
Pressure

Luminosity

turn on/off
sprinkler acc = 0.98

[36]
Artificial
Neural

Network

soil moisture
air Humidity

air Temperature

pump
act/deact acc = 0.97

[37] Random Forest Soil moisture pump
act/deact acc = 0.98
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One kind of hierarchical data structure that employs the divide-and-conquer tactic
is a decision tree. Due to its high precision and low computation costs, it is widely used.
Decisions are made using nodes, and the output or result is represented by leaf nodes.
Because of the flexible tree topology, the decision tree model is non-parametric. It expands
following data and complexity issues. In [38], information on the soil’s moisture content,
the humidity level at the moment, and the weather forecast were processed to make
decisions about how long irrigation should last and how much water should be used.
Categorical data were used by a decision tree to make decisions. A farmer with experience
provided sample data needed for the decision tree.

Similarly, in [37], a random forest, i.e., a collection of random decision trees, was used
to decide to irrigate or not based on measures of water level of the soil.

Often, decision trees serve as the foundation for gradient boosting approaches, which
are machine learning methods that provide a prediction model in the form of an ensemble
of weak prediction models—that is, models that, like decision trees, make relatively few
assumptions about the data.

An effective example of a boosting machine for smart irrigation can be found in [32]:
the final goal was to estimate soil moisture starting from crop types, actual and historical
soil moisture values, weather conditions (from in-farm weather stations), and weather
forecast data coming from the cloud and soil water profile that is modeled as a feature
as well. In [33], it was proved that a combination of gradient boosting techniques for the
regression/prediction of soil moisture and k-means for the classification of the irrigation-
needed grade can outperform other algorithmic combinations on an edge computing model.
Gradient boosting algorithms were also applied in [34] for predicting evapotranspiration
from weather data and thereby aiding in irrigation planning.

Other well-known traditional machine learning strategies leverage Support Vector
Machines (SVMs). By creating a hyperplane that maximizes the distances separating the
data, SVMs are used to divide the data into linear and nonlinear categories. The points
that comprise the support vector can be examined to determine the exact location and
orientation of the hyperplanes.

In [35], sensors (soil moisture, humidity, temperature, pressure, and luminosity) are
used to collect soil and surrounding data. At the beginning, features are selected by a
correlation-based criterion and clustered by the K-means algorithm, keeping, in this way,
similar data together. The classification model is built using Support Vector Machines, and
the binary output allows to decide to turn on/off the sprinkler according to the supervised
set of training samples on rise crops.

Neural networks (NNs) are one of the most widely used machine learning models
for data processing. Neural networks are collections of algorithms that attempt to identify
the relationships between two or more pieces of data in a way that mimics the way the
human brain operates. The structure of a neural network is similar to that of the biological
brain, with neurons receiving inputs with weights that can be adjusted along the edges
of the incoming data. The most predictive model often uses the activation function, sig-
moid, or Relu, to represent the non-linearity of the data. They are used also for smart
irrigation purposes.

As an example, a three-stage network trained using the Levenberg–Marquardt algo-
rithm was employed in [36]. The input sensors provided the first stage’s three primary
parameters, which were air temperature, soil moisture, and humidity. Ten nodes in the hid-
den layer, which made up the middle stage, generated the values of learned neural weights
that were needed to assist in making the ultimate decision about how to design an irriga-
tion system. The output layer, the last stage, oversees the decision of whether to turn the
water pump motor on or off. Finally, various shallow classifiers (KNN, logistic regression,
neural networks, SVM, and Naïve Bayes) were compared in [31] concerning categorical
soil moisture, temperature, and humidity data. A value of “0” indicated that pumping had
to be stopped, while a value of “1” indicated that pumping had to be activated.
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4.2. Deep Learning Methods

Deep learning offers several advantages over traditional machine learning, such as
the ability to learn from raw data without much preprocessing, capture complex and
nonlinear relationships, scale well with large and diverse datasets, and perform well in
domains where human expertise is limited. Additionally, its performance can be improved
with more data and computational power. In this subsection, the most relevant deep
architectures exploited to aid in irrigation processes are reported, and Table 2 summarizes
them. For each system, the machine learning strategy, the actual input and estimated
output values, and performance are reported, providing a quantification of the empirical
assessment of the systems.

Table 2. Most relevant works relying on deep learning architectures. In table: LSTM = Long
Short-Term Memory, Bid-LSTM = bidirectional LSTM, CNN = convolutional neural networks,
Mask-RCNN = mask region-based convolutional neural network, GNN = Graph Neural Networks,
GWl = groundwater level. Acronyms: MAE = mean absolute error; RMSE = root mean square error;
acc = number of correct predictions/number of predictions done.

Works Method Input
(Actual)

Output
(Estimated) Performance

[39] LSTM
temperature,

humidity,
and soil moisture

temperature,
humidity,

soil moisture
RMSE = 2.35%

[40] CNN field’s images soil moisture
MAE = 1.44%
RMSE = 2.74%

[41] CNN field’s images soil moisture RMSE = 2.01%

[42] Mask-RCNN field’s images soil moisture
Validation
loss = 0.8

[43] CNN field’s images soil moisture acc = 0.97

[44] TFT
Multivariate

environmental
Sources

soil moisture MAE = 2.75 RMSE = 3.34

[45] Bid-LSTM

air temperature,
air humidity,
wind speed,
precipitation

data,
Soil moisture,

electrical
conductivity,
temperature

soil moisture,
electrical

conductivity

MAE = [0.79, 4.32]
RMSE = [1.41, 5.03],

MAE = [0.68, 4.38]
RMSE = [1.12, 6.52]

[46] GNN Ground Water Ground Water
MAE = 0.67
RMSE = 1.14

[47] ResNet
GoogleNet

Images Texture-water class acc = 0.99

[48] LSTM

volumetric
soil moisture,

soil temperature,
climate data,
and rainfall)

volumetric
soil moisture

RMSE = 1.2%

Deep neural networks that can work with variable length sequences and do not require
fixed-size time windows are known as recurrent neural networks (RNNs) [49]. This makes
them an effective method for handling sequence-dependent data. The hidden neurons
are gradually coupled by feedback loops in these densely connected networks. A state
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vector found in the hidden units retains the memory of every element in a sequence that
came before it. RNNs may learn long-term dependencies across numerous time steps and
generalize across input sequences rather than just particular patterns thanks to their internal
memory. For this reason, RNNs are a good fit for a variety of natural language-processing
applications, including forecasting and time series analysis. It makes precise projections of
the future possible by utilizing time series data patterns.

Long Short-Term Memory (LSTMs) networks [50] refer to a particular type of RNN
architecture that can sustain long-lived dependencies. The basic concept behind LSTM
networks is a memory cell that stores the time state of the network across several time
steps (more than 1000). Non-linear gateways control the flow of information by selectively
storing and removing information in this memory cell. The use of LSTM-based neural
networks was exploited in [39] to obtain predictive values of temperature, humidity and
soil moisture. The Bid-LSTM network is a deep bidirectional long short-term memory
network that processes sequential input in both the forward and backward directions.
By fusing bidirectional processing with the power of LSTM, the model can represent the
input sequence’s past and future context. It was utilized in [45] to enhance forecasts of
soil electrical conductivity and moisture (SM), offering a useful guide for fertilization and
irrigation. In [48], an LSTM was also employed to forecast the volumetric soil moisture
content for a given day, the duration of irrigation, and the spatial distribution of water
needed to irrigate the field.

One type of deep learning technique that is particularly helpful for computer vision
applications like image recognition and classification is convolutional neural networks.
Through the capture of critical features in early layers and intricate patterns in subsequent
levels, they are intended to understand the spatial hierarchy of features. They have been
exploited for smart irrigation to estimate soil moisture from the in situ field or remotely
(from satellite [40], Unmanned Aerial Vehicle [42] or airborne [41] acquired images [43]).
Some works make use of CNNs to identify probable plant illnesses associated with irri-
gation systems [51]. Conversely, traditional CNN architectures (specifically, GoogleNet
and ResNet) have demonstrated significant potential in identifying irrigation needs for
agricultural fields with different soil texture classes and lighting in soil frames segmented
in close-up photos [47].

To address the issue of neural machine translation, or sequence transduction, trans-
former designs were created. This refers to any activity that converts an input sequence
into an output sequence [52]. They are based on the encoder–decoder strategy and have
been largely exploited for speech recognition and text-to-speech transformation.

Modern time series forecasting models like the temporal fusion transformer [53] are
based on the architecture of classical transformers. Their strength lies in their efficient
architecture and their capacity to incorporate static (i.e., time-invariant) variables. Inter-
pretability can be maintained by using temporal fusion transformers to simulate intricate
relationships between various temporal (historic or future) and static inputs. Specifically,
in [44], they have been effectively compared with LSTM and other state-of-the-art tech-
niques for soil moisture forecasting in smart agriculture with diverse multivariate, local,
and non-local sources.

Graph Neural Networks (GNNs) represent a new and rapidly expanding class of
neural network models that can represent intricate interactions within sensor topologies
and have shown state-of-the-art performance in multiple IoT learning tasks [54]. A class
of deep learning techniques called Graph Neural Networks (GNNs) is made to make
inferences on graph-described data. In [46], for example, they have been used recently
to accurately estimate groundwater levels, where each well is represented as a node in
the graph.

5. The Datasets

The above-discussed methodologies highlighted as reliable soil moisture forecasts
mainly rely on the analysis of multivariate time series and the correlation between the



Information 2024, 15, 306 10 of 23

stations of a sensor network. Including additional parameters like soil temperature, soil
composition, underground water availability, current and forecast weather conditions, and
exploiting the mutual influence of different areas in a field under monitoring enables a better
understanding of the complex dynamics driving soil moisture variations. In particular,
air humidity, air temperature, and of course, rain events directly influence the amount of
ingoing and outgoing soil water.

Unfortunately, the collection of such data requires multiple expensive sensors that
frequently occur in failures, making the collection of desired data challenging.

In the next paragraph, the main datasets and data sources concerning the aforemen-
tioned data will be presented, discussing their main characteristics and their availability.

5.1. Soil Moisture

Soil moisture represents the water content of the soil. It is usually expressed in
terms of volume or weight, and its measurement can be made by means of in situ probes,
remote sensing, or model-based approaches. Water that enters a field during rain events or
irrigation is removed by evaporation, transpiration, runoff, and drainage [55]. The amount
of the water that evaporates into the atmosphere directly from the field’s surface is known
as evaporative water loss, whereas transpiration refers to the amount of water that passes into
the atmosphere from the plant itself. Runoff and drainage are regarding, respectively, the
water that flows on the surface to the edge of the field and the water that flows through the
soil downward.

Soil moisture products include all the solutions devoted to systematically measuring
the soil water content. These products can be broadly classified into three categories: remote
sensing-based products, model simulations-based products, and in situ measurements-
based products [56].

Remotely sensed products that retrieve data from active/passive satellite microwave
observations are characterized by a strong sensitivity to soil moisture, the capacity to
observe, at the same time, the weather context, and the advantages of short-term access.
For these reasons, they have become a valuable way to estimate soil moisture at large scales.
Among remote sensing-based solutions, it is worth mentioning the merged approaches
that estimate soil moisture by blending multiple separately released microwave remotely
sensed products [57]. Unfortunately, space-borne microwave instruments for soil moisture
retrievals usually work on the coarse spatial resolution of ∼101–∼103 km2, and the retrieval
quality is affected by multiple spatially and temporally variable factors, such as weather
conditions and land cover conditions [58]. Also, the retrieval algorithm and the instrument
characteristics affect the reliability of the measurement [59]. These reasons make remote
sensing suitable for monitoring soil moisture at the meteorological scale of spatial variability
but almost useless for precision agriculture applications.

Model-derived soil moisture represents a way to estimate the soil moisture that
mainly relies on a mathematical model marginally driven by measurements and includes,
among others, NASA’s Modern-Era Retrospective Analysis for Research and Applications
(MERRA), European Center for Medium-Range Weather Forecasts (ECMWF), and NASA’s
Global Land Data Assimilation System (GLDAS). Unfortunately, such an approach does
not provide the accuracy required by a reliable water management system.

On the other side, ground-based sensor networks show more reliable characteristics
and can be modeled both on large and small scales depending on the purposes. The
calibration and validation of models devoted to soil moisture forecast, as well as the
validation of remote sensing-based products, have primarily relied on large-scale networks.
Small-scale networks best fit the needs of smart agriculture. The first attempt devoted to
offering a unique access point for multiple, globally available ground-based soil moisture
datasets was the Global Soil Moisture Data Bank (GSMDB) [60,61]. Another attempt,
the first international initiative, regards FLUXNET, which includes the monitoring of
land–atmosphere exchanges of carbon (C), energy, and water but unfortunately does not
include soil moisture measurements in all sites [62]. In recent years, the most reliable
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solutions devoted to the collection and sharing of this kind of data have provided research
and industry with a huge amount of data. (See Table 3). In the next paragraphs, we
will discuss the most relevant datasets selected depending on their size, data reliability,
and completeness. Finally, a discussion on the control of data quality will be provided.

Table 3. Soil moisture datasets: a summary of the most relevant soil moisture dataset. ISMN data
have variable coverage, time interval, sensor depth, and weather availability since they come from
several networks that are spread worldwide.

Dataset Coverage No. of Site Time Interval Sensors
Depth Weather Additional

Data

ISMN [63,64]
https://ismn.earth/en/
Last access: 19 May 2024 Variable ∼450 Variable Variable Variable Variable

CAF [65]
https://goo.gl/JYAIT3

Last access: 19 May 2024 <1 Km2 42 2007–2016 up to 150 cm Yes Field Info

MSMMN [66]
https://www.oznet.org.au

Last access: 19 May 2024 82,000 Km2 38 2001–current up to 90 cm Yes No

5.1.1. ISMN

The International Soil Moisture Network (ISMN) (https://ismn.earth/en/—Last
Access: 19 May 2024) [63,64] was born from the cooperation of the Global Energy and Water
Cycle Experiment, the Group of Earth Observations, the Committee on Earth Observation Satellites
and the financial effort of the European Space Agency (ESA). The ISMN represents a data
lake for in situ soil moisture networks data devoted to overcoming the issues related to
data accessibility, timeliness in data delivery, and data heterogeneity. ISMN does this by
collecting and harmonizing soil moisture datasets from 80 worldwide distributed networks
(consisting of more than 3000 sites) and making them available through a centralized
data portal. All individual stations measure soil moisture, but many of them also provide
measurements of soil and air temperature, soil suction, precipitation, snow water equivalent
depth, and surface temperature, enabling complex analyses of soil moisture dynamics.
Other than that, it is worth noting that most other networks, before being shared with the
ISMN, first undergo extensive data quality inspection [67].

It is finally worth mentioning that ISMN also provides additional external data regard-
ing, soil characteristics, consistent climate and land cover. More precisely, soil information
is obtained from the Harmonized World Soil Database (HWSD) with a 30” resolution, land
cover is retrieved from ESA’s Climate Change Initiative with a 300 m resolution, and finally
the Köppen-Geiger database provides climate classification.

Among the available networks, we can mention the one located within the Shandian
River basin, referred to as SMD-SDR. Such a network is designed to match multiple scales
and, consequently, multiple needs spreading from the application of smart irrigation
algorithms to the assessment of remote SM products. More precisely, network stations
are distributed in a three-sampling-scale nested structure (100 km, 50 km and 10 km).
Each station is equipped with five sensors at different measuring depths (3, 5, 10, 20, and
50 cm) and with a sampling interval varying between 10 and 15 min. Out of the 34 stations,
20 are equipped with the HOBO rain gauge, mostly at small scale and medium scale.
The observation period of this study ranges from September 2018 to December 2020.

5.1.2. CAF Dataset

The Cook Agronomy Farm (CAF) dataset [65] provides a 9-year record of hourly
soil moisture of 42 stations located in the 37 ha of the experimental R.J. The CAF dataset
represents an example of a soil moisture dataset explicitly designed for smart agriculture

https://ismn.earth/en/
https://goo.gl/JYAIT3
https://www.oznet.org.au
https://ismn.earth/en/
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applications. The CAF dataset aims to represent a no-tillage annual cropping system in
regional dryland. More precisely, the dataset was obtained by dividing the farm into three
experimental sub-fields. Additionally, each sub-field was divided into wide strips devoted
to account for the crop rotation.

The 42 stations were installed in 2 successive campaigns (12 in 2007 and 230 in 2009),
and each of them monitors soil water content at five depths—0.3, 0.6, 0.9, 1.2, and 1.5 m—for
a total of 210 sensors. Locations have been carefully chosen to maximize variability in
several relevant parameters (e.g., elevation, slope, and insolation). The 42 sensor sites span
lag distances between 60 m and 905 m. The dataset provides 14,127,840 hourly readings;
out of these, 5,121,639 are missing a water content reading, and 5,070,945 are missing a
temperature reading. Each specific sensor shows a missing record rate between 9% and
79% with an average value of 35% across all sensors. Volumetric water content values less
than 0 or greater than 1 (sensor failure) have been replaced with NA values.

The dataset provides data regarding the cropping history of each sub-field and strip
for each year, a digital elevation model, particle size, and the bulk density to 1.5 m depth at
each of the 42 instrumented locations. Finally, meteorological data are collected by an on-
site station recording values like air temperature, relative humidity, dew point temperature,
soil temperature, rainfall, wind speed and direction, solar radiation, and leaf wetness at 2 m
of height. The dataset is publicly available at the dataset website [https://goo.gl/JYAIT3].

5.1.3. MSMMN Dataset

The Murrumbidgee Soil Moisture Monitoring Network (MSMMN) [66] dataset is a
soil moisture dataset from the 82,000 km2 Murrumbidgee River Catchment in Australia.
The sensor network includes 38 soil moisture-monitoring sites across the Murrumbidgee
Catchment that are mainly concentrated in three subareas.

The network inception started in 2001 and counts two different generations of sen-
sors. Soil moisture sensors were installed in the upper 90 cm of the profile (0–30, 30–60,
and 60–90 cm), and measures are sampled every 5 or 60 s and then averaged to 30 or
20-minute measurements depending on the specific site. Furthermore, other sensors com-
plete the data, providing information about soil temperature and precipitation. Additional
weather data like air temperature, air pressure, relative humidity, wind speed, and down-
ward short-wave and long-wave radiation are available for all sites.

In order to minimize the amount of corrupted data, measurements from all soil
moisture monitoring sites have been carefully inspected to identify and remove errors or
frag missing data.

5.1.4. Data Quality Control and Interpretation

In the discussion above, we defined a network as a set of stations managed by an
entity (e.g., organizations and partnership), where the number of stations ranges between
one and several hundred, and each network has been designed for different applications,
uses different sensors, and consequently shows different characteristics and features. Other
than that, depending on the specific area of the globe where the network is located, the soil
moisture regime varies dramatically. Even specific meteorological events can cause specific
soil moisture dynamics that have to be specifically considered. In other words, although it is
unrealistic to consider a single typical behavior of logged soil moisture, most of the readings
have several features in common, and their understanding is fundamental for detecting
errors in soil moisture measurements. Indeed, most of the logged raw data contain errors
such as outliers, breaks, signal saturation, or missing data due to unresponsive sensors.
Finally, it is mandatory to check the changes in soil moisture as a function of changes in the
soil temperature and precipitation.

Among the specific behaviors, the fluctuation related to temperature is one of the most
significant. Most of the soil moisture probes show a pronounced sensitivity to temperature
because of the positive relationship between electric conductivity and temperature. This
effect leads to artificial diurnal soil moisture fluctuations that are more evident in the upper

https://goo.gl/JYAIT3
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soil layers where the temperature fluctuation is greater [67]. Another phenomenon related
to the temperature regards frozen soils and the cyclic behavior of freeze–thaw events. In the
first cases, a lower value of soil water content is recorded because of the significantly lower
dielectric conductivity (reference of most of the SM probes) of ice than liquid water. For the
same reason, even in the absence of rain or irrigation events, there will be alternating low
and high levels of soil moisture records during thawing (during the day) and freezing
(at night).

Common sources of error, such as random noise, which is an intrinsic component
of any measurement, as well as the previously listed outliers, breaks, signal saturation,
and unresponsive sensors, all affect the quality of data. Spikes usually come out from
temporary sensor failure or reduced current supply. On the other hand, brakes usually cause
a semi-permanent offset of measurement value, where the main difficulty is represented
by the understanding of the truth represented by the period before or after. The source of
brakes (jumps or drops) can also be caused by a current supply reduction but can also be
associated with real sudden changes in environmental conditions. Constant values can
also affect the data reliability and are usually caused by values exceeding the upper limit
of sensitivity of the sensor (high signal) or longer sensor dropouts (low signal). Finally,
erroneous calibration could cause systematic biases, whereas instrument drift (a gradual
systematic change over time caused by oxidation of the sensor rods, salinization, increasing
soil compaction, etc.) shows non-existing changes in climatologist conditions.

An estimate of the station data quality, as well as the understanding of specific soil
moisture dynamics and their meaning, is of particular interest to those researcher who wish
to train algorithms and models devoted to forecasting soil moisture trends to drive water
management policy toward keeping a constant and high level of health for soil and crops.

5.2. Weather

Most of the above-mentioned datasets do not come with meteorological data that,
anyway, represent pivotal information in approaches exploiting multivariate time series
analysis for soil moisture forecasting and smart irrigation purposes. Indeed, weather,
as stated above, is the main factor driving the soil water content in addition to irrigation.
More precisely, historical data can be exploited for training and evaluation purposes and
allow the enrichment of soil moisture datasets, whereas forecasts are highly useful at the
inference step to obtain reliable predictions of soil moisture trends. There exists a wide
set of online services providing both historical and current weather conditions as well as
weather forecasts. Many of them are completely free for non-commercial use, others allow
a limit on the number of requests, and others provide some specific services (historical data
or long-term forecasts) only for payment plans.

5.2.1. Open-Meteo

Open-Meteo (https://open-meteo.com—Last Access: 19 May 2024) is an open-source
weather platform offering free access for non-commercial use. It offers 80 years of historical
weather data: hourly weather forecasts for up to 16 days, global weather models and
regional models with respectively up to 11 km and 1.5 km resolution, and weather model
updates every hour for both Europe and North America.

Among the high-resolution local and global weather models integrated in Open-
Meteo, we can cite NOAA GFS with HRRR, DWD ICON, MeteoFrance Arome&Arpege,
ECMWF IFS, JMA, GEM HRDPS, and MET Norway. Such models are free to download
but challenging to process (they require expertise in grid systems, projections, and the
fundamentals of weather predictions). Open-Meteo takes care of the daily download and
processing of these models, making them easily available using simple API requests.

The API is available at no cost for non-commercial use and ensures top-notch forecast
accuracy. The API utilizes a vast set of local weather models with frequent updates,
ensuring that the most precise forecast is generated for any location globally. The API is

https://open-meteo.com
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provided as a REST service but wrapping in Python, Typescript and Swift is also available,
making their integration in most scientific environments easily affordable.

5.2.2. OpenWeather Map

OpenWeather (https://openweathermap.org/—Last Access: 23 May 2024) provides
local minute forecasts, historical data, current state, and short-term and even annual
forecast weather data. Their weather products are available using reliable APIs (provided
as REST service) that follow industry standards and are compatible with different kinds
of enterprise systems. Historical weather goes back for one month to more than 40 years,
depending on the subscription plan. Additionally, they offer customized weather maps
with fifteen weather layers that show forecast, historical, and present weather information
as well as global precipitation maps created using satellite and radar data.

OpenWeather provides different pricing plans; at the time of writing, the free one
allows 1,000,000 calls for months, on current weather and short-term forecasts, whereas the
fee plans include additional services, including historical data.

5.3. The Missing Dataset

The described panorama shows that, despite the huge number of available datasets,
just a few of them fit the scale of the “smart irrigation” problem and just the CAF dataset [65]
is made with a well-structured experiment setup and provides information related to agri-
culture practices and type of crops and fields. Unfortunately, even this one lacks data
related to irrigation, quality/quantity of crops, and additional details. Other than that, it
refers to a specific location and small set of crops, limiting in this way the generalization
capabilities of the developed models. Finally, weather data availability is an additional
limitation. Weather services, as discussed above, are usually based on the combination
of several models, and cannot ensure 100% reliable data that, especially in case of pre-
cipitation events, play a pivotal role in the interpretation of soil moisture variations. The
considerations above make it clear that to enable the deployment of general-purpose smart
irrigation systems, the deployment of ad hoc datasets is mandatory. From the perspective
of the agricultural context, a desirable dataset should fit the scale of a typical farm field and
provide measurements from multiple sites onto the field to make the use of approaches
exploiting spatial correlation possible. Weather stations providing, at minimum, informa-
tion like rain gauge, air temperature, soil temperature, and solar radiation are required to
validate and understand soil moisture dynamics in each specific location. The experimental
setup should follow the modality of the CAF dataset [65], considering multiple crops and
agriculture methodologies in a single location. This way, such aspects should be included
as informative parameters driving the decisions of the system. Another key element is
the tracking of the irrigation process. A dataset providing data regarding the irrigation
instances, irrigation modalities, and the employed amount of water should be pivotal in
understanding the response of the field to each specific process. Other than that, consider-
ing the application of different irrigation strategies in different sectors of the field would be
also useful to optimize the irrigation process as a function of available water reserve, soil
moisture forecast and crop health. Finally, this kind of process should be reproduced in
several locations world-wide in order to consider different environments, season dynamics,
and agriculture trends. A bonus should be specific attention paid to sensor failures in order
to minimize missing data, a non-negligible limitation in the application of multivariate
time series approaches, especially in the situation relying on spatial correlation. All these
characteristics should allow the creation of complete and rich datasets playing the role of a
game-changer in the context of smart irrigation.

6. Decisions Layer

A smart irrigation system tries to imitate a human expert in helping farmers with
making decisions on irrigation optimization.

https://openweathermap.org/
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If the learning process has been carried out on reliable data for the considered field and
crops, i.e., data can be considered fully representative of the complex system made up of
the soil, the environment and the plants, the decision can be directly made on the outcomes
of the processing layer. In these cases, a thresholding operation, or the putting in place of
the provided categorical classification, is enough to make the final decision about irrigation.
In the case of thresholding, stored values describing the minimum requirement for the
considered observed parameters (e.g., soil moisture) are used as a reference. This allows
the system to better fit the conditions of the specific field under observation. In the case of
categorical outputs from the processing layer (e.g., irrigation needed yes/no), the actual
conditions of the field are ignored. However, it is most common that the training is
performed on available data not perfectly fitting the actual conditions in the monitored field,
and then a further step becomes necessary. This step is included in an additional decision
layer. The decision layer takes as input the numerical outcomes estimated by the processing
layer (e.g., forecasted soil moisture) and mixes them with models describing the agricultural
processes (e.g., evapotranspiration, plant growth) and additional information/knowledge
useful to make the best decision at that specific moment for that specific field to reach the
predefined application goal. The integration of the decision layer for an optimal irrigation
system could be schematically represented as in Figure 2.

Figure 2. Physical layer exploits outcomes of the Processing layer, the information provided by the
models describing the specific environment and, depending on the goals provided by the domain
expert, provides the farmer with a proposal on an irrigation plan.

Models describe physical environmental phenomena that occur in the field and its
surroundings. In general, rainfall runoff models [68] are the standard tools for investigating
hydrological processes. Transient modeling, which enables the evaluation of water evolu-
tion (both quality and quantity), as well as the creation of hypothetical scenarios, can be
used to integrate the temporal variable into the system and improve decision-making [69].
On the other hand, crop models can also play important roles in setting up decisions for
assessing and estimating crop water needs [70].

Additionally, evapotranspiration (ET) models can be used to calculate agricultural
water requirements. These models account for the transfer of vaporized water from the
land to the atmosphere through plant transpiration and soil evaporation [71]. Crop growth
models and climate simulation models can also provide additional important elements that
can help in automatically making irrigation decisions [72].

It is increasingly important to use crop and hydrological models in combination to
compensate for each other’s shortcomings in order to quantitatively characterize many
aspects of agricultural production and, ultimately, increase the efficiency of water resource
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utilization [73]. The Water Balance Models [74] combine the available observations with the
fundamental knowledge to characterize the system’s behavior through the application of
scientific methodologies. According to Water Balance Models, evapotranspiration, capillary
rise, deep percolation, and the surface runoff effect are examples of water outflows that
contribute to changes in soil moisture content over time, as water inflows like irrigation
and rainfall are [75].

The application goal is the motivation for why an intelligent irrigation system is
being designed and installed. Common goals include reducing water waste, reducing crop
disease, or increasing crop yield [76]. In other words, the application objective defines the
cost function to be optimized. Some other important aspects that could help in setting up the
decision layer are the groundwater quality indexes, the quantity of water in reservoirs [77],
and the amount of human labor required to irrigate [78]. Summing up, the application
goals define the cost function to be minimized/maximized by the smart irrigation system,
and it can depend on one of several aspects among the aforementioned ones.

After setting up the application goal, the available hydrogeological and functional
models, and the eventual additional application aspects, the decision rules can be conse-
quently defined, in general, through logic diagrams.

In this regard, an effective proof of concept can be found in [79] in which information
on soil moisture distribution and real-time crop water uptake fed a water-saving scheme
for making irrigation decisions.

The use of (deep) reinforcement learning can be an intermediate level of automation
of the decision-making task: the goal of reinforcement learning is to find the optimal
strategy to maximize the sum of long-term rewards to the agent devoted to making deci-
sions. This interaction between the agent and training environment is repeated until the
agent converges to an optimal strategy, for instance, for choosing the next day’s irrigation
amount [80].

7. Discussion and Open Challenges

From this study, it emerged that there are several issues to be addressed to step forward
with reliable and scalable smart irrigation systems. Machine learning models exploited in
this research area focus on the prediction of data series values. The main issue related to
machine learning is the lack of data to accomplish knowledge extraction in the specific and
complex application domains. Available datasets on soil moisture are mostly designed for
environmental monitoring and lack most of the information that could drive the design
of a complete and reliable smart irrigation system. First of all, the sensor networks scale
is usually oriented to monitor large areas and does not fit the standard dimension of
agriculture fields. Training machine learning solutions exploiting geographical information
on these kinds of datasets does not guarantee their reliability in monitoring small-scale
sensor networks in an agricultural context.

Another issue regards data inconsistency. In most of the datasets, the sensor type and
the number of sensors change site by site, making the selection of input to the machine
learning algorithms challenging. Meteorological data are available on a limited number
of sites, making the necessity of online weather services mandatory. Unfortunately, these
resources are usually based on satellite data and models that usually do not fit the desired
fine grain required by the context. Other than that, no information concerning field
management in terms of agriculture practices is provided. Only the CAF dataset [65],
which covers a farm field use case, contains information regarding crops in different sub-
fields but does not track irrigation sessions, crop health, and water resource availability,
information that is pivotal in the design of a complete and reliable decision support system
for water management in smart irrigation. The irrigation process is characterized by
geographical, seasonal, and agricultural conditions (type of crops, irrigation method, etc.).
Collecting domain-specific datasets can lead to overfitting with performance dropping
when new unseen data, acquired with different surrounding conditions, are provided.
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Unfortunately, transfer learning, domain adaptation and other common tricks in machine
learning have not been investigated adequately yet [81].

Even though the benefit of using smart irrigation systems emerged from the state of
the art, the performance evaluation (i.e., the quantification of the advantages of using them
concerning traditional irrigation approaches) is another critical point: it is often based on
numerical comparisons between predicted and actual data values following common error
quantification metrics, such as mean squared error (MSE), mean absolute error (MAE),
and root mean squared error (RMSE) [82]. It is worth noting that these error metrics may
not capture the nuances of forecasting accuracy, especially when dealing with intermittent
demand, outliers, or imbalanced datasets. Unfortunately, domain-specific metrics able
to assess the effectiveness of decisions about in-field actions (e.g., how much water is
necessary concerning the amount of water provided) have not been carried out since it is
particularly challenging to obtain data.

The empirical assessment of smart irrigation systems is usually carried out by simula-
tion [83] or, more hopefully, by twin fields [84].

To achieve this objective, digital twin technologies have also been utilized. These
technologies enable the automatic bidirectional flow of data between a physical object and
its virtual counterpart. In the case of a smart irrigation system, its sensors and actuators are
linked to their virtual representations within the digital twin framework [85,86].

Understanding the specific goals and requirements of the smart irrigation domain
(water saving, crop health, water quality, groundwater quantity, etc.) and developing or
selecting evaluation metrics that are meaningful and relevant to this domain is not trivial
and requires strong knowledge sharing. Moreover, incorporating domain knowledge into
the evaluation process relies upon interaction among several domain experts who can
provide valuable insights into the data, features, and potential biases that may affect the
performance of machine learning models in the specific domain. This process leads to some
problems of interaction, which can hinder effective collaboration and knowledge sharing.
They arise from communication barriers (jargon, terminology differences, and disciplinary
silos), and differing perspectives. The key aspects to overcome these drawbacks could be to
start domain-aware feature engineering involving domain experts in identifying relevant
variables, domain-specific patterns, and meaningful representations of the data. Testing
crop growth patterns, for instance, can aid in mitigating soil depletion, while varying
weather and soil conditions may influence decisions regarding irrigation.

Strictly related to the definition of affordable metrics is the problem of assessing the
reliability of smart irrigation solutions: an acceptable level of error in irrigation scheduling
depends on several specific factors, and it is very difficult to determine if an error score
is acceptable or not for a specific application. Solutions to the above issues pass through
explainable and transparent machine learning models, which can allow domain experts
to validate and understand the underlying reasoning. User feedback would hopefully
refine the technological solutions, but this has been only simulated so far [87]. Finally,
smart irrigation systems should be scalable and adaptable to different farm sizes, crop
types, and environmental conditions. They should also integrate with other agricultural
technologies and management systems to support holistic farm management.

8. New Research Horizons

By carefully considering these factors and tailoring the evaluation process to the
specific application domain, researchers and practitioners can ensure that machine learning
techniques are effectively evaluated and deployed to address real-world challenges and
opportunities. On the one hand, a feasible way forward is to take advantage of the
continuous improvements in machine learning methods. Researchers and practitioners
continue to develop new methods and tools to address these challenges and improve the
effectiveness of time series forecasting techniques. Below are some examples of current
techniques that have not been considered for smart irrigation so far.
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Since GNNs operate under the premise that a node’s state is influenced by the states
of its neighbors, they enable each node in a graph to be aware of the context of its neigh-
borhood by distributing information through structures. Theoretically, these kinds of
structures in smart irrigation systems could better identify underlying correlations between
variables and also help comprehend the underlying dynamics of values measured on
fields in nearby locations. Integrating graph networks with various temporal modeling
frameworks (e.g., LSTM) allows the capture of both intra-series (temporal) dependencies
and inter-series (spatial) dynamics [88]. Unfortunately, forecasting is severely constrained
by distinct spatial and temporal modeling, which inherently contradicts the unified spa-
tiotemporal inter-dependencies in the real world [89]. Introducing hypervariate graphs,
such as the Fourier Graph Neural Network (FourierGNN) [90] which views each series
value as a graph node regardless of variates or timestamps and represents sliding windows
as space-time fully connected graphs, is an intriguing idea to get around the limitations
mentioned above. By using graph learning networks, it would be possible to learn the
hidden dependencies between variables, enhancing in this way the multivariate time series
forecasting [91]. They can handle complicated real-world patterns like those seen in a smart
irrigation scenario by describing relationships between variables as static long-term and
dynamic short-term patterns, where the short-term patterns reflect the dynamic nature of
the multivariate time series.

Transformer-based models (e.g., Crossformers for cross-dimension dependency mod-
eling) have demonstrated significant promise in representing temporal dependencies
(cross-time dependencies) as well [92]. However, they fail to account for cross-dimensional
dependencies, which are crucial for forecasting in intelligent irrigation applications. The na-
ture of the permutation-invariant self-attention mechanism inevitably results in temporal
information loss [93].

Using foundation models may be a practical way to enhance time series forecast-
ing [94]. They are learning models based on the Transformer architecture and its core
attention module, with billions of parameters, trained on large amounts of data to enable
their use in several use cases. Their latest achievements in computer vision and natu-
ral language are quite impressive. Foundation models could be effectively exploited for
smart irrigation since they can identify universal patterns within extensive time series data
from varied sources, even in the presence of temporal distribution shifts. On the other
hand, they require huge amounts of data which must be collected as a preliminary step.
This data availability is, at this moment, the main limitation of their exploitation in smart
irrigation tasks.

Among foundation models, the Mamba architecture should be explored for the specific
smart irrigation domain since it is particularly suited for modeling long sequences, and
efficient implementations are also publicly available [95].

The drawbacks of data can be addressed by using powerful generative approaches.
Generative models aim to create new, artificial samples based on a dataset of real data
by learning the underlying probability distribution. Diffusion models [96] are a class of
deep learning-based generative models that have gained popularity recently in advanced
machine learning research. They are employed extensively in text, video, and image syn-
thesis due to their exceptional ability to produce samples that closely mirror the observed
data. The idea of diffusion has been expanded to time series applications in recent years,
and numerous potent models have been created [97]. Their ability to work without con-
straining the target distributions made them preferable with respect to other generative
approaches [96]. In particular, in a smart irrigation system, they could be effectively ex-
ploited in the case of sensor failures or missing historical records since they have been
well suited for the time series imputation task. Finally, unsupervised systems could also
be exploited for anomaly detection in incoming data. They can effectively detect sensor
failures, which helps make the right decisions about irrigation. For example, the use of
Autoencoders [98] and GANs [99] should be further investigated considering the recent
promising results in [100,101].
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9. Conclusions

This paper reported a narrative survey of recent works dealing with machine learning
architectures for smart irrigation purposes. Throughout the paper, existing strategies have
been discussed and open issues have been pointed out, with also prospective research
lines to be pursued to build scalable, domain-independent approaches. From the literature,
it emerges that significant efforts have been put into building smart architectures by
combining ICT and IoT technologies, i.e., by concentrating efforts on the physical layer.
On the other hand, the processing level and related datasets require much more effort
to reach maturity. The availability of reliable and curated datasets is the key point put
in place for the exploitation of recent machine learning approaches, and it could be the
breaking point towards a fully automated smart irrigation system that, in the future, should
also include the application models into the training process. This will lead to end-to-end
machine learning strategies that are completely, fully data-driven. The study paves the way
for our next work, which will deal with the implementation of a new machine learning
architecture, leveraging up-to-date strategies and datasets collected in different living labs
in the Mediterranean area.
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